Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8210, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589474

RESUMO

The gut microbiota is known to play an important role in energy harvest and is likely to affect feed efficiency. In this study, we used 16S metabarcoding sequencing to analyse the caecal microbiota of laying hens from feed-efficient and non-efficient lines obtained by divergent selection for residual feed intake. The two lines were fed either a commercial wheat-soybean based diet (CTR) or a low-energy, high-fibre corn-sunflower diet (LE). The analysis revealed a significant line x diet interaction, highlighting distinct differences in microbial community composition between the two lines when hens were fed the CTR diet, and more muted differences when hens were fed the LE diet. Our results are consistent with the hypothesis that a richer and more diverse microbiota may play a role in enhancing feed efficiency, albeit in a diet-dependent manner. The taxonomic differences observed in the microbial composition seem to correlate with alterations in starch and fibre digestion as well as in the production of short-chain fatty acids. As a result, we hypothesise that efficient hens are able to optimise nutrient absorption through the activity of fibrolytic bacteria such as Alistipes or Anaerosporobacter, which, via their production of propionate, influence various aspects of host metabolism.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/metabolismo , Ração Animal/análise , Dieta/veterinária , Ingestão de Alimentos , Fenômenos Fisiológicos da Nutrição Animal
2.
PLoS One ; 17(8): e0270012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976909

RESUMO

Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/genética , Galinhas/microbiologia , Humanos , Tonsila Palatina , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Transcriptoma
3.
Genet Sel Evol ; 54(1): 7, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093028

RESUMO

BACKGROUND: Salmonella Enteritidis (SE) is one of the major causes of human foodborne intoxication resulting from consumption of contaminated poultry products. Genetic selection of animals that are more resistant to Salmonella carriage and modulation of the gut microbiota are two promising ways to decrease individual Salmonella carriage. The aims of this study were to identify the main genetic and microbial factors that control the level of Salmonella carriage in chickens (Gallus gallus) under controlled experimental conditions. Two-hundred and forty animals from the White Leghorn inbred lines N and 61 were infected by SE at 7 days of age. After infection, animals were kept in isolators to reduce recontamination of birds by Salmonella. Caecal contents were sampled at 12 days post-infection and used for DNA extraction. Microbiota DNA was used to measure individual counts of SE by digital PCR and to determine the bacterial taxonomic composition, using a 16S rRNA gene high-throughput sequencing approach. RESULTS: Our results confirmed that the N line is more resistant to Salmonella carriage than the 61 line, and that intra-line variability is higher for the 61 line. Furthermore, the 16S analysis showed strong significant differences in microbiota taxonomic composition between the two lines. Among the 617 operational taxonomic units (OTU) observed, more than 390 were differentially abundant between the two lines. Furthermore, within the 61 line, we found a difference in the microbiota taxonomic composition between the high and low Salmonella carriers, with 39 differentially abundant OTU. Using metagenome functional prediction based on 16S data, several metabolic pathways that are potentially associated to microbiota taxonomic differences (e.g. short chain fatty acids pathways) were identified between high and low carriers. CONCLUSIONS: Overall, our findings demonstrate that the caecal microbiota composition differs between genetic lines of chickens. This could be one of the reasons why the investigated lines differed in Salmonella carriage levels under experimental infection conditions.


Assuntos
Microbiota , Salmonelose Animal , Animais , Galinhas/genética , Humanos , RNA Ribossômico 16S/genética , Salmonelose Animal/genética , Salmonella enteritidis/genética
4.
NPJ Vaccines ; 6(1): 92, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294732

RESUMO

This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.

5.
PLoS One ; 16(4): e0250655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905437

RESUMO

This study describes the fecal microbiota from piglets reared in different living environments during the weaning transition, and presents the characteristics of microbiota associated with good growth of piglets after weaning. Fecal samples were collected pre- (d26) and post-weaning (d35) from 288 male piglets in 16 conventional indoor commercial farms located in the West of France. The changes one week after weaning on the most abundant microbial families was roughly the same in all farms: alpha diversity increased, the relative abundance of Bacteroidaceae (-61%), Christensenellaceae (-35%), Enterobacteriaceae (-42%), and Clostridiaceae (-32%) decreased, while the relative abundance of Prevotellaceae (+143%) and Lachnospiraceae (+21%) increased. Among all the collected samples, four enterotypes that were ubiquitous in all farms were identified. They could be discriminated by their respective relative abundances of Prevotella, Faecalibacterium, Roseburia, and Lachnospira, and likely corresponded to a gradual maturational shift from pre- to post-weaning microbiota. The rearing environment influenced the frequency of enterotypes, as well as the relative abundance of 6 families at d26 (including Christensenellaceae and Lactobacillaceae), and of 21 families at d35. In all farms, piglets showing the highest relative growth rate during the first three weeks after weaning, which were characterized as more robust, had a higher relative abundance of Bacteroidetes, a lower relative abundance of Proteobacteria, and showed a greater increase in Prevotella, Coprococcus, and Lachnospira in the post-weaning period. This study revealed the presence of ubiquitous enterotypes among the farms of this study, reflecting maturational stages of microbiota from a young suckling to an older cereal-eating profile. Despite significant variation in the microbial profile between farms, piglets whose growth after weaning was less disrupted were, those who had reached the more mature phenotype characterized by Prevotella the fastest.


Assuntos
Ração Animal/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Envelhecimento , Animais , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Fazendas , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Masculino , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Suínos , Desmame
6.
Front Behav Neurosci ; 14: 581296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312120

RESUMO

A role of the gut microbiota in psychiatric disorders is supported by a growing body of literature. The effects of a probiotic mixture of four bacterial strains were studied in two models of anxiety and depression, naturally stress-sensitive Fischer rats and Long Evans rats subjected to maternal deprivation. Rats chronically received either the probiotic mixture (1.109 CFU/day) or the vehicle. Anxiety- and depressive-like behaviors were evaluated in several tests. Brain monoamine levels and gut RNA expression of tight junction proteins (Tjp) and inflammatory markers were quantified. The gut microbiota was analyzed in feces by 16S rRNA gene sequencing. Untargeted metabolite analysis reflecting primary metabolism was performed in the cecal content and in serum. Fischer rats treated with the probiotic mixture manifested a decrease in anxiety-like behaviors, in the immobility time in the forced swimming test, as well as in levels of dopamine and its major metabolites, and those of serotonin metabolites in the hippocampus and striatum. In maternally deprived Long Evans rats treated with the probiotic mixture, the number of entries into the central area in the open-field test was increased, reflecting an anxiolytic effect. The probiotic mixture increased Tjp1 and decreased Ifnγ mRNA levels in the ileum of maternally deprived rats. In both models, probiotic supplementation changed the proportions of several Operational Taxonomic Units (OTU) in the gut microbiota, and the levels of certain cecal and serum metabolites were correlated with behavioral changes. Chronic administration of the tested probiotic mixture can therefore beneficially affect anxiety- and depressive-like behaviors in rats, possibly owing to changes in the levels of certain metabolites, such as 21-deoxycortisol, and changes in brain monoamines.

7.
Microorganisms ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751315

RESUMO

The gut microbiota comprises a large and diverse community of bacteria that play a significant role in swine health. Indeed, there is a tight association between the enteric immune system and the overall composition and richness of the microbiota, which is key in the induction, training and function of the host immunity, and may therefore, influence the immune response to vaccination. Using vaccination against Mycoplasma hyopneumoniae (M. hyo) as a model, we investigated the potential of early-life gut microbiota in predicting vaccine response and explored the post-vaccination dynamics of fecal microbiota at later time points. At 28 days of age (0 days post-vaccination; dpv), healthy piglets were vaccinated, and a booster vaccine was administered at 21 dpv. Blood samples were collected at 0, 21, 28, 35, and 118 dpv to measure M. hyo-specific IgG levels. Fecal samples for 16S rRNA gene amplicon sequencing were collected at 0, 21, 35, and 118 dpv. The results showed variability in antibody response among individual pigs, whilst pre-vaccination operational taxonomic units (OTUs) primarily belonging to Prevotella, [Prevotella], Anaerovibrio, and Sutterella appeared to best-predict vaccine response. Microbiota composition did not differ between the vaccinated and non-vaccinated pigs at post-vaccination time points, but the time effect was significant irrespective of the animals' vaccination status. Our study provides insight into the role of pre-vaccination gut microbiota composition in vaccine response and emphasizes the importance of studies on full metagenomes and microbial metabolites aimed at deciphering the role of specific bacteria and bacterial genes in the modulation of vaccine response.

8.
Anim Microbiome ; 2(1): 2, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499995

RESUMO

BACKGROUND: In pig production systems, weaning is a crucial period characterized by nutritional, environmental, and social stresses. Piglets transition from a milk-based diet to a solid, more complex plant-based diet, and their gut physiology must adapt accordingly. It is well established that piglets weaned later display improved health, better wean-to-finish growth performance, and lower mortality rates. The aim of this study was to evaluate the impact of weaning age on fecal microbiota diversity and composition in piglets. Forty-eight Large White piglets were divided into 4 groups of 12 animals that were weaned at different ages: 14 days (early weaning), 21 days (a common weaning age in intensive pig farming), 28 days (idem), and 42 days (late weaning). Microbiota composition was assessed in each group by sequencing the 16S rRNA gene using fecal samples taken on the day of weaning, 7 days later, and at 60 days of age. RESULTS: In each group, there were significant differences in fecal microbiota composition before and after weaning (p < 0.05), confirming that weaning can drastically change the gut microbiota. Microbiota diversity was positively correlated with weaning age: microbial alpha diversity and richness were higher in piglets weaned at 42 days of age both on the day of weaning and 7 days later. The abundance of Faecalibacterium prausnitzii operational taxonomic units (OTUs) was also higher in piglets weaned at 42 days of age. CONCLUSIONS: Overall, these results show that late weaning increased gut microbiota diversity and the abundance of F. prausnitzii, a microorganism with positive effects in humans. Piglets might thus derive a competitive advantage from later weaning because they have more time to accumulate a higher diversity of potentially beneficial microbes prior to the stressful and risky weaning period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...